Alkynylsulfenylation of alkenes activated by phosphorus oxohalide

N. V. Zyk, E. K. Beloglazkina, * M. A. Belova, and N. S. Dubinina

Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory, 119992 Moscow, Russian Federation. Fax: +7 (095) 939 0290. E-mail: bel@org.chem.msu.su

Whereas arylsulfenylation of alkenes with arylsulfenyl chlorides is a well-known electrophilic addition reaction, similar alkynylsulfenylation reactions have not been described so far. We have found that N-(2-phenylethynylthio)morpholine (1) in the presence of POHal₃ (Hal = Cl, Br) acts as an effective donor of the alkynylsulfenylating species.

The reactions of norbornene and cyclohexene with alkynylsulfenamide 1 in the presence of $POCl_3$ and $POBr_3$ were studied. The reactions gave 1,2-trans-halosulfenylation products 2-4.

The structures of compounds **2—4** were determined by ^{1}H and ^{13}C NMR spectroscopy. The analysis of the spectra and the subsequent structure ascription were based on the data¹ concerning the substituent influence on the chemical shifts and on the ^{1}H — ^{1}H spin-spin coupling constants. The stereochemistry of compound **4** was determined using the ω -criterion.²

We have shown previously that phosphorus oxohalides activate electrophilic addition of arylsulfenylamides and thio and dithio bisamines 4,5 to alkenes. The discovered alkynylsulfenylation reaction confirms the applicability of this activation method to a broad range of compounds containing S-N bonds.

¹H and ¹³C NMR spectra were recorded on a Varian VXR-400 instrument operating at 400 and 100 MHz, respectively.

Alkynylsulfenylation (general procedure). A solution of phosphorus oxohalide (25 mmol) in anhydrous $\mathrm{CH_2Cl_2}$ was added at $-40~\mathrm{C}$ to a solution of N-(2-phenylethynylthio)morpholine 6 (0.55 g, 25 mmol) in 20 mL of anhydrous $\mathrm{CH_2Cl_2}$. After 5 min, alkene (25 mmol) dissolved in the same solvent was added at the same temperature. The reaction mixture was heated to 20 °C and stirred until the reaction was complete (TLC monitoring). The solvent was removed *in vacuo* and the residue was passed through a filtering column with silica gel ($h=3-4~\mathrm{cm}$); petroleum ether was used as the eluent.

2-endo-Chloro-3-exo-(2-phenylethynylthio)bicyclo-[2.2.1]heptane (2), $R_{\rm f}$ 0.86 (EtOAc—petroleum ether, 1 : 10).

¹H NMR (CDCl₃), δ: 7.43—7.24 (m, 5 H, C₆H₅); 4.18 (td, 1 H, HCCl, $J_{\rm H(2),H(1)} = J_{\rm H(2),H(3)} = 4.0$ Hz, $J_{\rm H(2),H_{\rm exo}(6)} = 1.8$ Hz); 3.02 (dd, 1 H, HCS, $J_{\rm H(3),H(2)} = 4.0$ Hz, $J_{\rm H(3),H_{\rm anti}(7)} = 2.7$ Hz); 2.51 (t, 1 H, HC(1), $J_{\rm H(1),H(2)} = J_{\rm H(1),H_{\rm exo}(6)} = 4.0$ Hz); 2.40 (d, 1 H, HC(4), $J_{\rm H(4),H_{\rm exo}(5)} = 4.6$ Hz); 2.00 (dddd, 1 H, Hendo (6), $J_{\rm Hendo}(6), J_{\rm exo}(6) = 13.1$ Hz, $J_{\rm Hendo}(6), J_{\rm Hexo}(6) = 8.8$ Hz, $J_{\rm Hendo}(6), J_{\rm exo}(5) = 4.0$ Hz, $J_{\rm Hendo}(6), J_{\rm Hexo}(5) = 5.0$ Hz); 1.90 (dtt, 1 H, $J_{\rm Hsyn}(7), J_{\rm Hsyn}(7), J_{\rm Hsyn}(7), J_{\rm Hsyn}(7), J_{\rm Hendo}(6) = 2.5$ Hz, $J_{\rm Hsyn}(7), J_{\rm Hendo}(6) = 2.5$ Hz, $J_{\rm Hsyn}(7), J_{\rm Hendo}(6) = 3.1$ Hz, $J_{\rm Hexo}(5), J_{\rm Hexo}(5), J_{\rm Hexo}(5) = J_{\rm Hexo}(5), J_{\rm Hexo}(6) = 13.1$ Hz, $J_{\rm Hexo}(5), J_{\rm Hendo}(6) = J_{\rm Hexo}(5), J_{\rm Hexo}(5), J_{\rm Hexo}(5) = J_{\rm Hexo}(5), J_{\rm Hexo}(6) = 13.1$ Hz, cage protons).

¹³C NMR (CDCl₃), δ: 131.8 (C arom.); 128.7 (C arom); 128.6 (C arom.); 123.7 (C=); 94.8 (C=); 67.0 (CCl); 59.8 (CS); 36.3; 32.4; 30.1; 29.8; 29.5. Found (%): C, 68.57; H, 5.70. C₁₅H₁₅CIS. Calculated (%): C, 68.56; H, 5.75.

2-endo-Bromo-3-exo-(2-phenylethynylthio)bicyclo[2.2.1]heptane (3), $R_{\rm f}$ 0.87 (EtOAc—petroleum ether, 1:10). ¹H NMR (CDCl₃), δ: 7.57—7.25 (m, 5 H, C₆H₅); 4.47 (td, 1 H, HCBr, $J_{\rm H(2),H(1)} = J_{\rm H(2),H(3)} = 4.2$ Hz, $J_{\rm H(2),H_{\rm exo}(6)} = 1.9$ Hz); 3.16 (dd, 1 H, HCS, $J_{\rm H(3),H(2)} = 4.2$ Hz, $J_{\rm H(3),H_{\rm exo}(7)} = 2.7$ Hz); 2.55 (t, 1 H, HC(1), $J_{\rm H(1),H(2)} = J_{\rm H(1),H_{\rm exo}(6)} = 4.2$ Hz); 2.38 (d, 1 H, HC(4), $J_{\rm H(4),H_{\rm exo}(5)} = 4.3$ Hz); 1.53—1.33 (m, 6 H, cage protons). ¹³C NMR (CDCl₃), δ: 131.8 (C_{arom}); 129.7 (C_{arom}); 128.7 (C_{arom}); 118.0 (C=); 94.9 (C=); 61.4 (CBr); 58.5 (CS); 45.5; 43.8; 36.1; 29.4; 24.3. Found (%): C, 57.76; H, 5.65. C₁₅H₁₅BrS. Calculated (%): C, 58.64; H, 4.92.

trans-1-Chloro-2-(2-phenylethynylthio)cyclohexane (4), $R_{\rm f}$ 0.84 (EtOAc—petroleum ether, 1 : 10). ¹H NMR (CDCl₃), δ: 7.50—7.25 (m, 5 H, C₆H₅); 4.08 (td, 1 H, HCCl, J = 9.2 Hz, J = 4.2 Hz); 3.04 (td, 1 H, HCS, J = 9.2 Hz, J = 4.1 Hz); 2.40 (m, 8 H). ¹³C NMR (CDCl₃), δ: 136.7 (C_{arom}); 132.0 (C_{arom}); 129.7 (C_{arom}); 123.8 (C≡); 96.3 (C≡); 62.1 (CCl); 54.5 (CS); 29.5; 25.0; 23.1; 14.6. Found (%): C, 67.06; H, 5.80. C₁₄H₁₅ClS. Calculated (%): C, 67.05; H, 6.03.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 02-03-33347) and by the "Russian Universities" Foundation (Project No. 990879).

References

- 1. A. J. Gordon and R. A. Ford, *The Chemist's Companion*, Wiley and Sons, New York, 1972, 293 pp.
- 2. N. S. Zefirov, V. V. Samoshin, O. A. Subbotin, V. I. Baranenkov, and S. Wolfe, *Tetrahedron*, 1978, **34**, 2953.
- 3. N. V. Zyk, E. K. Beloglazkina, R. Gazzaeva, V. S. Tyurin, and I. D. Titanyuk, *Phosphorus, Sulfur, Silicon, Relat. Elem.*, 1999, **155**, 33.

- 4. N. V. Zyk, E. K. Beloglazkina, S. Z. Vatsadze, I. D. Titanyuk, and Yu. A. Dubinskaya, *Zh. Organ. Khim.*, 2000, **36**, 828 [*Russ. J. Org. Chem.*, 2000, **36** (Engl. Transl.)].
- N. V. Zyk, E. K. Beloglazkina, and N. S. Zefirov, *Izv. Akad. Nauk*, *Ser. Khim.*, 1996, 2522 [*Russ. Chem. Bull.*, 1996, 45, 2393 (Engl. Transl.)].
- J. B. Baudin, S. A. Julia, and R. Lorne, *Bull. Soc. Chem. France*, 1987, 181.

Received June 27 2002; in revised form September 9 2002